Sol-Gel Template Synthesis and Photocatalytic Activity of TiO₂ Nanofibrils Loaded on Al₂O₃ Template

Yuan GAO, Wei YU, Meng Ke LI, Hu Lin LI*

Department of Chemistry, Lanzhou University, Lanzhou 730000

Abstract: TiO_2 nanofibrils were prepared within the pores of alumina template membrane by use of sol-gel chemistry. The TiO_2 nanofibrils have good crystallinity and size. There is agglomeration free among the particulates of TiO_2 and the fibrils show high catalytic activity.

Keywords: TiO₂ nanofibrils, photocatalysis, template-synthesis method.

During recent decades, photocatalytic degradation of various toxic organic compounds has been proposed as a viable process to detoxify drinking water¹. Environmental purification using TiO₂ photocatalysts has attracted a great attention with the increasing number of environmental problems in the world². As photocatalysts are often applied as suspensions, many problems associated with catalyst leaching, settling, floatation and the separation of catalyst during post treatment. These hinder their wide scale application in industry. Therefore, catalyst immobilization related research has attracted wide attention³. Simple coating⁴⁻⁶ of the catalyst over glass, zeolite, silica, and ceramic, however, often leads to catalyst leaching and dissolution. On the other hand, the generally used sol-gel method induces agglomeration of the particulates of the catalyst film in the burning process. In this work we prepared TiO₂ nanofibrils by use of sol-gel chemistry within the pores of alumina template membrane to solve above problems. This material binds to alumina firmly, and has the advantages of good crystallinity and size. It is easily recyclable. The photocatalytic activities of TiO_2 nanofibrils/Al₂O₃ and TiO₂/glass plate were measured using an acridine dye solution as a model.

Microporous anodic aluminum oxide (AAO) films were prepared by anodic oxidation of electropolished aluminum plate at a cell voltage of 80 V in 0.5 mol/L phosphoric acid at 25°C for 1.5 h⁷. The porosity of the anodic membrane consisted of an array of parallel and straight channels with a diameter of about 80 nm, and the film diameter and thickness were 15 mm and about 20 μ m, respectively. TiO₂ fibrils were prepared using a sol-gel method similar to that described by Lakshmi *et al.*⁸. Firstly, the TiO₂ sol was prepared. Then the AAO films were dipped into this sol for an immersion time 5 to 60s. After immersion, the membrane was removed from the sol, dried at room

^{*}E-mail: liuht@lzu.edu.cn

Yuan GAO et al.

temperature and then heated in a tube furnace. The formed TiO_2 nanofibrils were characterized by atomic force microscope (AFM). **Figure 1** shows the AFM image of porous AAO template with a pore diameter of about 80 nm and a pore density of about $10^{10}-10^{11}$ cm⁻². Perfect hexagonal pore arrays can be observed within domains of microsize, which are separated from neighboring alumina domains with a different orientation of the pore lattice by grain boundaries. The AFM image of TiO₂ deposited on the porous AAO template is shown in **Figure 2**. Discontinuous distribution of uniform and small grain TiO₂ with average particle size of 80 nm on the surface of AAO template was obtained.

The photodegradation of acridine dye in aqueous solution under visible light irradiation with a medium pressure mercury lamp was carried out to test the photocatalytic activities of TiO₂ nanofibrils/Al₂O₃. In comparison, glass plate supported TiO₂ were tested under the same condition. The degradation of acridine dye was monitored by UV-Vis spectroscopy. The results were illustrated in **Figure 3**. In the absence of TiO₂, the loss of acridine dye from the solution during irradiation was very slow (curve a) compared with other two curves, indicating that the degradation of acridine dye was a TiO₂-associated photocatalytic process. The curve c in **Figure 3** is for the solution that contained the fibrillar TiO₂/Al₂O₃ photocatalyst. A rapid (relative to the TiO₂/glass film catalyst, curve b) decrease in acridine dye concentration was observed. The observed first-order photodegradation rate constant of fibrillar TiO₂/Al₂O₃ photocatalyst is 9.1×10^{-3} min⁻¹, larger than that of TiO₂/glass film (3.2×10^{-3} min⁻¹).

Sol-Gel Template Synthesis and Photocatalytic Activity of TiO₂ 1117 Nanofibrils

Figure 3 The photodegradation of acridine dye (2.74 $\times 10^{-5}$ mol/L) under irradiation by visible light (wavelengths > 470nm)

(a) no photocatalyst, (b) the thin-film TiO₂/glass photocatalyst,
(c) the TiO₂ fibriliar/Al₂O₃ film photocatalyst.

Our results demonstrate that the rate of photocatalytic degradation of acridine dye is dependent on the template on which TiO_2 is loaded. AAO is a better template than glass plate. The explanation lies in the following facts: Photocatalytic chemical reactions occur on the surface of TiO_2 . Therefore catalyst with larger surface areas is more efficient. Loading TiO_2 on glass plate unavoidably led to aggregation of TiO_2 particulates due to long-time heating-treatment, and consequently decreased the surface active sites. This aggregation does not occur to TiO_2 loaded on AAO, as shown in **Figure 2**. The nanoparticles can be seen clearly uniformly distributed over the AAO template. The porous structures on the surface of alumina template help to fix TiO_2 particles within the nanosize pores, preventing TiO_2 from aggregation with one another during heating process. This porous structure also strengthens the binding of TiO_2 on AAO, thus the TiO_2 fibriliar/Al₂O₃ film is very stable. No catalyst desquamating was observed during our experiments.

In conclusion, the AAO supported nanoparticles TiO_2 was prepared and its photocatalyzing effect in photodecomposition of organic substances in water phase was found. The supporting materials were proved to play an important role to affect the photocatalyzing activity of the TiO_2 nanofibriliars. The crystalline phase, particle shapes and the way the particles array of TiO_2 nanofibriliars are also the significant factors, affecting the catalytic activity. This work might be helpful to develop new, highly efficient immobilized photocatalysts in further studies.

Yuan GAO et al.

Acknowledgment

This study was supported by the National Natural Science Foundation of China (No 69890220).

References

- 1. D. F. Ollis, H. Al-Ekabl, eds., *Photocatalytic Purification and Treatment of Water and Air*, Elsevier, Amsterdam, **1993**.
- 2. N. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Chem. Lett., 1995, 841.
- 3. J. Fernandez, J. Bandara, A. Lopez, P. Albers, J. Kiwi, Chem. Commun., 1998, 1493.
- 4. U. Stafford, K. A. Gray, P. V. Kamat, J. Phys. Chem., 1994, 98, 6343.
- 5. H. Al-Ekabi, N. Serpone, J. Phys. Chem., 1995, 99, 5633.
- 6. J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. Gonzales-Elipe, *Appl. Catal. B*, **1997**, *13*, 219.
- 7. Y. Peng, H. L. Zhang, S. L. Pan, H. L. Li, J. Appl. Phys., 2000, 87, 1.
- 8. B. B. Lakshmmi, P. K. Dorhout, C. R. Martin, Chem. Mater., 1997, 9, 857.

Received 26 November, 2001

1118